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1, INTRODUCTION
Contract NASw-835 supports studies related to ionospheric probing. The basic
contract calls for a program of theoretical studies, which were carried out during
the period 1 October 1963 - 1 October 1964. Amendment 4 provides for a continuation
! of these theoretical studies for an additional year.
Amendment 4 encompasses four principal tasks, as follows:
1) Current distribution, field patterns, and impedance of long antennas
in the ionosphere.
2) Effects of finite thermal velocities of the charged particles in
the ionosphere on antenna properties.
3) Effects of ion sheaths around antennas on their radiation properties
in the ionosphere.
4) Nonlinear effects of electron motion on antenna radiation from the
standpoint of diagnostics.
The topics covered in this report are items 1), '2) and 4) above. Note that the
discussion of item 2) is included with that of item 4):. It is planned to reactivate
work on item 3) during the next quarter.
Due to the late date on which Amendment 4 was issued, the present report
covers the six-month period 1 October 1964 - 31 March 1965. It thus combines the
material that normally would have appeared.in two separate qdérterly progress

reports.



2. CURRENT DISTRIBUTION, DIRECTIVE PATTERNS, AND IMPEDANCE OF ANTENNAS
The work program carried out under the assignment of task 1) is discussed

in the following section.

2.1 CURRENT DISTRIBUTION

As an outgrowth of the analysis of the impedance of a dipole antenna, the
variational technique was applied to optimize the propagation constant for the
current along the dipole. This technique is discussed in detail in Scientific
Report No. 1 (to be referred to as SR 1 hereafter). Although the variational
technique is capable of optimizing the parameters in an assumed functional form
for the current distribution, it cannot determine whether the assumed functional
form is accurate. For this, one must determine how closely the boundary conditions
at the surface of the antenna are satisfied. 1In particular, the usual assumption
of a sinusoidal form may not be sufficiently accurate for long antennas.

The limiting case of a long antenna is one of infinite length., This is
actually simpler to handle mathematically, since end effects disappear. Thus the
case of an infinite, perfectly conducting wire has been selected for-initial study.
The wire, of radius a, is oriented at aﬁ!arbitrary angle O with respect to the
terrestrial magnetic field H,, which is in the z-direction.

As in the dipole impedance analysis, two rectangular coordinate systems are
used, Z(x,y,z) and Z'(x',y',2'), (seé Fig. 1), where z 1is along H, and where 2z'
along the axis of the cylinder. The x and x' axis coincide, so that the axis ot

the cylinder is in the yz-plane.



Fig. 1
The electric field, E(x), is given in terms of a Green's function representa-

tion by

)

E(ﬁ’fda&'ﬁ(ﬁ:&.)'i{é.)

where x is the position of the field point and X, that of the source, and J(x;) is
the surface current density.

With the above representation for E(x), integral equations for J(x) may be
determined from the boundary conditions on the surface of the cylinder, which are
the vanishing points of the tangential components of E(x) at the surface of the

cylinder. Hence

0k B = fa e 6(sx) 3 (8] ”

where n' is the unit normal to the cylinder and r' is the radial variable of the



cylindrical coordinates r', ¢', z' in the &' system. Since J(x,) is a surface
current density, it may be represented as the sum of vectors in the z', and ¢'
directions,

J (x)= Jl(é!)gz' * 32(5.) &y (3)
Hence (2) represents a system of linear homogeneous integral equations in J, and
Jz .

Since the integral equations (2) are not readily solvable by known techniques

as long as J; (x) and J; (x) are completely arbitrary, we are led to making assumptions
as to functional forms for J, and J;. We assume that

R , . ,
Jl(?\(.l\): eA.kz z aneAnb

n=-co

, %)

L(x)=e*2' Y bret (5)

n=-~00

where the Fourier series g:anein¢' and g:bnei“¢' represent arbitrary ¢' dependence,
whose coefficients are to be determined. K is the propagation constant, which also
is to be determined.

After substituting (4) and (5) into (2), it may be shown that the tangential

components of E have the form elikz' multiplied by a function of ¢', the Fourier

coefficients a,s bn’ the radius a and the propagation constant K. That is,

. eaik2’ N
E2'| ¢ tinder ™ © flaan,bn K ¢)=0 (6)

and

LRZ' AT
s - = Q0 (7)
E¢ eylinder € 3(a’a“)bn’K‘¢)



The constants a,, b, and K must be determined so that f and g are identically

zero. To do this we expand f and g in Fourier series

2.5 . /
3 cofaamom K)eint ®
N=-o0
i
oo .
9=y dn(a,am,bm,K)e’““‘V (9)

By uniqueness of Fourier series, we have the set of equations
cnla,8m,bm, K)=0 (10)
In(8,8m,bm,K)=0 (11)
to determine a, b, and K. To simplify (10) and (11), only the leading order term

in the small parameter a will be retained.

2.2 DIRECTIVE PATTERN
The directive pattern of an antenna is the relative variation of the far field
with the angular coordinates about the antenna. The far field is that at a distance
‘which is very large compared to the dimensions of the current distribution and the
wavelength., Consequently, the current distribution, for a given direction, is
"seen" from the field point as a localized source. Thus the essential information
regarding the properties of the far field can be determined by investigating the
far field of a point source. For any other current distribution, this result
can be integrated over the current distribution to obtain the radiation pattern
of the finite source. This last integration presents no difficulty.
A rather general treatment of the far field problem for a homogeneous cold
collisionless ionosphere was given by Arbel and Felsen [1]. The far field
properties depend heavily on the dispersion curve, which is determined by the

normalized ionosphere parameters X and Y. Arbel and Felsen divided the positive



XY-plane into 9 regions, each giving rise to a different form of dispersion curve.
Actually, however, there are 14 distinct regions, as discussed sometime earlier
by Clemmow and Mullaly [2]. Thus, the Arbel-Felsen treatment is incomplete.
In particular, for certain ca;es where the wave frequency is well below the plasma
and gyro frequencies, multiple paths are possible. Since this situation appears
to be of importance to satellite radio astronomy, we shall discuss it in detail.

First, the 14 classes of dispersion curves will be discussed, and then the

-

determination of the far field for the VLF situation mentioned above will be carried
out. The Arbel-Felsen treatment is extended by including a small normalized
collision frequency, since this is found to eliminate a singularity of the field

due to a point source. The procedure presented includes that to be followed in the

general case.



2.2.1 Analysis of Dispersion Curve

In determining the far field from a point source, Green's function

representation (1) is used for the electric field E(x), where
) (i)
6(x-x)=fa'q 5 ™% : 12)

The matrix N is familiar from the impedance analysis. D, expressed in cylindrical
coordinates g, p, where ¢ is the coordinate parallel to the direction of the
magnetic field and p is the radial coordinate normal to the direction of the magnetic

field, is given by
D=—0(3o'4+0'2 Epz(—o(.—o(3)+2a‘o(3'§ + E-o(l P4+ Pz("lz'“%+°‘|°(3>'°(3 (o(‘,a-oé)} . (13)

0f particular interest in the far field calculation are the roots of D = 0
in the collisionless case, that is, when the parameters o, , &, ¥z are real,
These parameters are then expressed in terms of the normalized plasma and gyro

frequency parameters X and Y through

—_ X

°(|=)"‘_Y2

- XY

o2 = TIy2 (14)
&, 1-X%

where a bar is used over o,, (&, @3 to indicate the collisionless case. The

roots 012, 022 of D=0 in terms of p are then
- /‘T. " 0T, T 1 ’ —2_ =2
2 _P K TRy T 2SRy + 2 = N em = 12 .=~ = [ 2 = \[_2 % °‘2\
o, = oy — + X 20K X -~ X H oy
1,2 2%, 2%; jI_P( 1 FxX3) 1 X3 | 1X3(p NP = )

2— - -
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Depending on the relative values of X and Y, 012 and 022 may be positive and

real, negative and real, or complex. We are specifically interested in the positive

2 2

real values of g;° and 0,°, for positive values of p° so that o; and o, may be real.
In the collisionless case, the real values of o; and ¢, determine the propagating
waves in the medium. Likewise we are interested in the shape of the curves og,, oj
plotted versus p, since these will determine the statiomary ray paths. Of particular
interest is the position of relative maxima and minima, turning points of the curve,
i.e., points for which

dzcr,(_

== 0 16
552 (16)

and double turning points, i.e., points for which

2 3 .
dg; _d o,

S =0 . 17
dp?  dp3 an

The real values of g, and o, are determined by considering the signs and

the relative magnitude of the quantities U and W, in (15) which are given by

U= p*(%, +&3) - 2 &, &3 (18)

and
-2 _ =2

W=- 45X, (,ﬁ—&ﬁ(,ﬁ-%) (19)
?h: signzof W depends on the sign of &3, &1, the relative magnitudes of &3 and
a &_ % and the value of p° with respect to the last two quantities. Of concern
are ihe relative magnitudes of U° and W in a region of the ¥, Y plane where

Urw=pi(& -x5)2+p2(4xd xy)+ 455 &2 = 0 (20)

[see (16)].
In [1] the first quadrant of the X, Y plane is divided into nine regions.
The dispersion curve in each region differs from that in adjacent regions by

whether or not one, both, or none of the roots, o,, o, are real and whether or not




o, and g, have unbounded real values. The graph of the X, Y plane divided into the

|

’ 9 regions is given in Fig. 2, accompanied by the inequalities which determine
the regions.

|

Y

H
|
| X
FIG. 2

Region A: I1>X+%Y

Region B: . X +Y>1>X+ Y

Region C: X+ >1>%¥ + ¥

Region D: ¥ +¥>1> max [y, Xx]

Region E: Y>1 >X

Region F: min (Y, X) >1 >X - Y

Region G: X>1>max [Y, X - Y]

Region H: X-Y>1>%

Region‘I: min [Y, X - Y] > 1



In the calculation of the far field due to a point source, it is necessary
to know when the curves of g, , o, versus p possess turning points (points of i

inflection), that is, the points for which

df T APe
dp? dp

In determining these points, we find that some of the regions given above must be
subdivided in order that the number and location of the turning points be specified.
Fig. 3 shows the X, Y plane with the subregions specified. Inequalities are

included when regions differ from those given in Fig. 2.

Y I 2
Y= 2l (X=X Y-D 2
-2 Ji-x
(A=Y ¢2) =R
g2 | |FI| Fa x=1 =
z |
E.1
/
X2+ Y] — D /e 2
X+ Y'r — M
X+ Y=y |
A
(0,0) [

FIG. 3

10



Region E.1: X<1<min[Y, X +

Y
3y - 2+ 2., /2Y(Y-T) :]

Region E.2: max | X, X + <1<y
8 [ 3Y—2+ZﬂYTY717]

Region F.1: 2 <1 < min (Y, X)
VISR
R . - X-2 Y"2 < 1 < : X __2________
Region F.2: maxl:X Y, > ] 1 m1n[ * 12-X) (1+2)
Region F.3: X-v<ic< min[_X, £2 ZY-2 ]
) 2
1: max | ¥, —=t——0 | <1<
Region G.1 X [ (2-X) (Y+2)] 1<x
. 2
.2: - <l <mi 12-3) (¥+2)
Region G.2 max [Y, X Y] 1 < min [X, (2-X) (Y+2)]

Region I.1: X-2 §'2> <1i<min [¥, X - Y]

Region I.Z: I < min [Y’ X - Y, gX-ZH;{-Z)]

Characteristic curves will now be given for each region or subregion. As the
curves have some common characteristics, these will be discussed first and then a
more complete description for each region will be given. The actual curves are
given at the end.

First of all, we note from (15) that the dispersion curves are symmetric with
respect to both the ¢ and p axes; thus, we may frequently confine our discussion
to the upper half plane (g = 0). If the curve intersects the p-axds it does so
at either p = :i:jé::or p = & p, where

/ R*l_ :f, 2

Pr® V7% (21)

If the curve is unbounded it has for asymptotes g = * ph/-ozl 7013.
Toward determining maxima and minima of the curves, one differentiates oia

with respect to p to obtain

1



dy _ =pL7a p*+ 205 32 3,8)+ 27~ %)% ]

LT —*
dp [F23¢7+p* - -5)+ 2 a—g] (12)

é

Thus, S%i is zero when the numerator of (22) is zero; and upon substitution for
P .

cig we obtain the points for which there are possible maxima or minima to be
p=0

and

p2 5%z 2un gt T R 5) - R85, Gi-%) [ G &)~ &)
? 2?1<:aa"2§):-

(13

The existence of maxima and minima at these points depends on whether or not P and
; are real and whether or not values of o3 corresponding to p = 0, P, ; are real.
The turning points are determined by three methods. One is by noting the

possible maxima and minima. If in a single branch of ois 014 > 0, we obtain both
relative maxima and minima, a turning point must lie between. This is the case

in Regions F 1, F 3, G 1, I 2. Likewise, if we consider p as a function of ¢ and
obtain on a branch both maxima and minima for p as a function of g, (p > 0), then
a turning point must lie between the two extremes. This‘-is the case in Region D.
Lastly, turning points may occur without the occurrence of alternating extremes.

The method of determining the existence of these turning points is discussed

doy
dp?

seeks to determine for what values of X and Y this equation has a double root. This

thoroughly in [2]. Briefly, one determines the expression for = 0 and then

expression determines the boundary between Region E 1 and Region E 2. It is then
readily‘shown that the turning points separate in Region E 1 for real values of o,
and move into the complex plane in Region E 2. We shall not determine the location
of the turning points explicitly but for ease of notation will denote them by

p==xp', xp

12



The following is the discussion of the dispersion curve in each region or
subregion:
Region A: 1>X+Y
Here we have bounded curves for o, and g, where g, and g, intersect the p-axis
at p = =,/d; and p = £ p,, respectively. Both curves have relative maxima at
P =0 (o > 0) and neither curve possesses turning points.
Region B: X+Y>1>X+ ¥
Here we have a curve only for g, and the curve is bounded. It intersects
the p-axis at p = i,¢§;, has a relative maximum at p = 0, and has no turning points.
Region C: X+ ¥ >1>¥ + ¥
Here we have a curve only for o,. There is a bounded branch intersecting the
p-axis at p = % &;, having a relative maximum at p = 0 (g.> 0), and possessing
no turning points. There is also an unbounded branch intersecting the p-axis at
P = £ p, and possessing no turning points.
Region D: ¥ + ¥ >1>max [Y, X]
Here we have curves for both g, and g,. There is a bounded branch for o,
intersecting the p-axis at p - i:vé;, having a relative maximum at p = 0 (g > 0),
and possessing no turning points. There is an unbounded branch for g, intersecting

neither axis, having no turning points, and existing for ®* > p >p,, ~ ®*< p < - p,

pra 24 a,* [‘+ ﬁ_, (&',—a‘(,)j.
Y @-3,) A

For g, we have a bounded branch intersecting the p-axis at p = * p, and existing

where

for p, <= p<p, and - p; s p < -p,. There are turning points of the curve at

p==xp'.

13



Y
. : <1 < mi » X +
Region E 1 X min {:Y X 3y - 2 + 24 2y (Y-1) j]

In this region we have bounded curves for both g, and g,. o, intersects
the p-axis at p = % ,;, has no turning points and a relative maximum at p = O
(c > 0). o, intersects the p-axis at p = £ p, and has a relative maximum at

p =0 (g > 0); there are two turning points of this curve in each quadrant located

at p=zxp'' and p = £ p".
Region E 2: max X,X+='}'-_——-——-—-—"——=—_'——_—— <1<Y
3y - 2 + 2 ,/2Y (¥-1)

Here we have bounded curves with no turning points for ¢,, o,. Each curve
has a relative maximum at p = 0 (g > 0), and oy and g, intersect the p-axis at
p==p, and p = i,ng, respectively.

It should be noted here that the boundary between Region E 1 and Region E 2
is determined in [2]. At this boundary the turning points coalesce or p' ~];”

so that at the boundary

Ci;‘q; I — 'd:(v-,s - O
P Tpspn P lp=p
Region F 1: min (Y, X) > 1> 2

(2-X)(Y+2)
Here we have an unbounded branch for Oy and a bounded branch for Oy+ Oz has

a minimum at p = 0 (g > 0) and no turning points. g, has a relative minimum at
P =0 (c >0) and maxima at p = =+ P (o > 0). There are turning points for g, in

each quadrant at p = + p' where 0 < p' £P. o, intersects the p-axis at p = £ p,.

Again we have an unbounded branch for 63 and a bounded branch for g,. However,
in neither branch are there turning points. ¢, has a relative minimum at p = 0 (g > 0)
o, intersects the p-axis at p = + p, and has a relative maximungat p.= 0.

It should be noted that at the boundary between the regions F.l and F.2, that

is, where “(2<%)(¥®2) =1, Y>1, P = p' = 0 so that at p = 0

14



(."\T| Dlzq-l 6{572
OJP dp?> JF’
P>0 P on P':O

Otherwise the curve is as in Region F 2.

Region F 3: min (3, (zlglﬁglzl >1>X-Y

h
0

I

There is an unbounded branch for o, and a bounded branch for gy Oy has no

turning points; it exists for - p, < p < P, and has a maximum at p

0 (g >0).

o, has a relative maximum at p = 0 (g > 0), minimums at p = =P (g > 0), and thus
turning points in each quadrant at p= £ p', 0 < p' <P. We note that at the
bbundary between F 2 and F 3, that is where (X-2)(Y-2) = 2 and X-Y< 1, p - p' =0,

so that we have at p =0

_G_IT.Z = dzvzz = daq:z = O
d d p* olp?
i p=o P p=o po

1 Y 2 —1< 1<%X
Region G 1: max y ——
gte (2-X) (¥*2) _l

There is no curve for o, and a bounded curve for Oy« O, exists for
= P, Sps<p,. It has a relative minimum at p = 0 (g > 0) and a maximum at
P==Pp . Thus there is a turning point in each quadrant at p = = p, 0 < p' <P.

Region G 2: max [}, X-Yj]< 1 < min [%, ?E:%STQ;ET:]

Again there is no curve for ¢, and a bounded curve for g,. op exists for

- P <P S Py, has a maximum at p = 0, (o > 0) and no turning points. We note that

2. n
1 4

~

at the boundary of Region G 1 and G 2, that is, (%-2){¥#2) = 2, ¢v<1

sl

’

-so that at p =0

3
OIVé = 612“& = - V2

b dp?d
dpf)ao dP p=o d

Otherwise the curve is as given in Region G 2.

peo

15



Region I 1: min [Y, X-Y] > 1 > £§:22£§:Zl
We have no curve for g, and an unbounded branch for g;. o, exists for
- < p £ », does not intersect the p-axis and has a minimum at p = 0 (g > 0).
Region I 2: min [Y, X -Y, SX—-—Z—M%:—Z-Z] > 1.
Again there is no curve for g, and an unbounded branch for g,. o, exists
for - ®» £ p £ » and does not intersect the p-axis. There is a relative maximum
at p =0 (o0 > 0).and a relative minimum at p = 2 p (g > 0); thus, there is a

turning point in each quadrant at p = £ p' where O < p' <. At the boundary

between Region I 1 and Region I 2, that is where X-2 §-2 =1]land X - Y > 1,
P~ p' - 0 so thatat p = 0, we have
2 . 3
AT AT A37
2 = 2 - a - O ,
dp dlo" dp"3
p=o pro p=o

Other properties at the curve are as given in Region I 1.

16
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Region A: 1>X+yYy

Region B: X+Y>1>X+7Y

Region C: X+ >1>x +Y
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l Region D: X +Y >1>max [Y, X]

A

| | i e P

|
| FIG. 8
Region E 1: X< 1< min |Y, X + Y
3y - 2 + 22Y(¥-1)
v
\/“3
—ﬁ,\ P
FIG. 9

. Y
Region E 2: max |X, X + : <1l<Y
3y - 2 + 2 /2Y(Y-
, 18
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Region F 2: min (X, @'—}()Z(M) > 1 > max [K - ¥, —— |
« | |
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|"“3
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_ PR | DA _
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Region F 3: min (X, —y—)>1>X - Y
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FIG. 13

Region G 1: X>1>max s —-—3——--1
(2-X)(Y+2)

1S
| S

Region G 2: Amin X, 2—- > -
[ [— (2"X)(Y+2)J 1> max [Y, X-¥yy]

FIG. 14

Region H: X=-Y>1>%

" No curve.
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In addition to the previous curves it would be of interest to determine
the curves at the boundaries between the regions.' The curves for the boundaries
between E.2 and E 1, between G 1 and G 2, between F 1 and F 2, between F 2 and
F 3, and between I 1 and I 2 have already been discussed. We now look at the
remaining boundaries.

At the boundary between Region A and Region B, when X + Y = 1, the curve
for g, shrinks to the single point at the origin while the curve for ¢,, remains
the same as in both regions. At the boundary between Region B and Region C, when
X + ¥ = 1, the unbounded branch is not yet present (since when X + Y° =1,

p, — ®@); thus we have only the curve for g, as given in both regions. At the
boundary between Region C and D, where ¥+ =1, 0, has a real value only at
P = % p,; thus, we have a dispersion curve for o, as in Region C.

At the boundary between Region D and Region E, where Y =1, 0 < X <1, the
situation is somewhat more complex. o, and 0, switch roles and the asymptotes
coincide on the g-axis. Thus for a graph of the dispersion cdarve we have (where

we have not labeled g, and o,)

FIG. 17
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At the boundary between Region G and Region F, where Y=1, 1 <X < 2, we
have a bounded branch of the dispersion curve as given in the 2 regions. The
unbounded branch does not appear until Y > 1. Again, as when Y=1, 0 <X <1,
the roles of g, and g, are interchanged.

Finally, at the boundary between Region F and Region I, where X - Y = 1, the
curve for o, reduces to the point at the origin and the curves for g, remain the

same as given in each of the regionms.

23



2.2.2 Determination of the Far Field

The determination of the far field produced by a current distribution
J(x,) follows from a straightforward application of (1). For a homogeneous
isotropic medium, for which the Green's function G(x-%x;) is known in closed form,
this involves performing the indicated integrations to order 1/R, where R = ]5_- zl‘
is the mean distance from the current distribution to the (remote) field point.
For a homogeneous anisotropic ionosphere, however, the Green's function is
available only as a triple Fourier integral, so that the distance R is tied up
with the angular variables. In addition, under some conditions focusing can
take place so that the field no longer varies as 1/R.

The fact that R is large allows the evaluation of (1) to be performed by

asymptotic methods. Thus, Arbel and Felsen [3] treated this problem in a
rather general way for a collisionless ionosfhere by applying the method of
steepest descent. Their treatment included the investigation of special domains
of the ionosphere parameters which can be encountered. However, the domains
investigated by them do not include an important region of the VLF spectrum.
Consequently, a brief derivation of the applicable relations will be given here
for this case. The treatment will also be extended to include a small normalized
collision frequency, since this is found to eliminate a singularity of the field
due to a point source.
ion is arranged ags follows: Sec. 2.2.2.1 contains

ot . . . LI P PaK 4
llle CTredLlieunc Lil crhil

~a
[=1=1""

]

the preliminary reduction of the Green's function integrals to a form where an
asymptotic evaluation may be performed. A first-order evaluation of the field is
then carried out in Sec. 2.2.2.2 by the method of steepest descent, which is based

on the stationary properties of the phase functions, for isolated stationary

24



points. The location of the stationary points requires a knowledge of the
dependence of the phase function on the propagation constant parameter.

This has been investigated in Sec. 2.2.1. The first-order technique of

Sec. 2.2,2.,1 is not applicable for propagation along the terrestrial magnetic
field (6 = 0), so this special case is treated in Sec. 2.2.2.4, The

procedure of Sec. 2.2.2.1 also is based on the condition that the stationary
points, if more than one exist, are well separated. 1In certain directions,

two stationary points may coalesce to produce a focusing of rays, with
corresponding enhancement of the field. In the neighborhood of such directions

a revised procedure is necessary. This is sketched in Sec. 2.2.2.5.

2.2.2,1 Far Field of a Point Source
(1) for the field of a current distribution involves
the Green's function expressed as a Fourier integral (12). The limits of
the g-integrations in (12) run from - ® to ®. This Green's function
represents a spectrum of plane waves of all (including complex*) directions.
N and D are, in general, fourth degree polynomials. Consequently, in

integrating (1), the question of convergence arises. This is resolved by

* Complex directions correspond to waves having longitudinal components of
field; i.e., TM- or TE-waves.
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considering what is meant by a 'point source."

A point source is the limit approached by a short current element as its
length (measured in wavelengths) is reduced indefinitely. But in (12),
the integration over q includes infinitesimally short wavelengths. Thus, although
a point source is infinitesimally short compared to a wavelength in the medium,
it is not infinitesimally short compared to the wavelength as q - « in the
integral of (12). Hence, phase interference sets in between the field contributions
due to the extremities of the point source as q -+ ©, and this insures convergence
of the integral,

Writing the current distribution of the point source as

J(,{‘,n)’ 3(5l),é¢

where i, is a unit vector in the current direction and 6(x;) is the Dirac 6-

c
function, the x, -integrations in (1) are readily performed (4], so that (1)
becomes
(o) o
N;; o)
Ef{x)=C d’ __u_e"-%‘f s
where
C'-%KL, (25)
@m) '
The point of observation has the coordinates

(psin 6ccs ¢, p $in@s;ng, pces 6)

where

o=k R
 {

o e

It is convenient to introduce cylindrical q-coordinates aligned with the

terrestrial magnetic field direction, Thus, putting

Q peosp
q2°psing

and noting that there is no loss in generality in measuring B and ¢ from the
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common x, x'-axis of the two coordinate systems (see Figs. 2 and 3 of [3]),

(24) becomes

E(x)=C j:PaP S:Z,a {"aas N—ﬁgi ) 2, emvelpsnecesd-p)ra;cue (26)

The matrix N(q) will be written as N hereafter. D(q) is given by (13), which may
be written as

8=-ots (a3~ oi)(43-o3)
where the roots 012 and 022 are given by (15). (When collisions are present, &p
is to be replaced by wop.)
It should be noted that the roots do not depend on B. This corresponds to the
property tha; the plane wave spectrum of the Green's function is symmetrical about
the magnetic field direction,

The o 's depend on the ionosphere parameters through @, and “3'; It may be
shown that, when collisions are present &m@:l’a) < 0. 1In the case being cénsidered
here, the nofmalized collision frequency is small, Consequently, oy, 2 can be
expanded in a power series in z to first order; i.é.

on2(p)= &,z (p)- 427, 2(p)+ O(2). 27)
The expressions for g and.g are developed in Sec. 2.2.2.3. 5 is positive real, while,
for the VLF‘case being cohsideréd here, q is negativé‘imaginary and.g, is real.
Henoce, to 0(z2), 0, is negative imaginary. Thié root corresponds to the ordinary
wave, which is non=-propagating at VLF. Thus, at VLF, the extraordinary wave is
responsible for the propagated fieild,

The qe-integration in (26) may now be performed by residues to yield

o>~ 2w ‘ e“"??""nacos(¢-a) FN’ < ICCS ela’ Nz ;=& (28)
. N - _Na -ielcoseloy], A
.E..(ﬁ) ;ijo pdpjodp | «3(0_:_0",) p e~4€ ] p e z]&c

where N, 2 denotes -N(o-l, a)e

Since B does not enter into o, é , the p=integration®of (28) may be performed
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to obtain Bessel functions of argument w = p sin 8. The integrals encountered

are the following:

20 .
5 e W Byg 20T, (W)

Q

fne“'w“"o‘-""“" 2 -2 20, (w)

Q

. wW=gsné
50 e hin"p dp: er.f,/w)/w

m Liwceosp (2" —iweoss .

fo e ps:npcasﬁ dp-'O-fo e sinpdp .

If these are combined with the proper components of N encountered in evaluating

E(x), it is found that three types of integrals result:

o $0(pw) Lolplexp[-2plcos ole, 2]} pdp )
(7§30, (pw) Li(plexpl-spleos oo s]fpdp [ wepsine (29)

j: RALY Lt(P)e"P [‘4'6”‘05 o lo'.,z [$pde

where L,(p) and L, (p) are even functions of p, while L (p) is an odd function of
p. Since g, and g, are also even functions of p, as can be seeﬁ from (15).
the { }-expressions in the integrands of all three of the integrals in (29)
are even functions of p. Consequently the integration may be extended from
to ® by use of the relation
2 Tn(pw)= HO(pw)- e~ HD [-pw) ,
Finally, except in the neighborhood of sin.G = 0 (this case will be treated in
Sec. 2.2.2.4, the asymptotic form of the Hankel function may be used, since for

the far field, the argument is large:

K (pu)~ (s ) @A Dre (0205 ] (30)

7 pw ’

Correspondingly, the expression for the far field takes the form
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c 00 g-ippsine 2 N(om) —iol
E (x)=—* . T ym m] -sp ccs6lam i ;
~(~) (esine)* S‘m d_'a_ g}z mL‘-l() o e - P dp 4e (31)
where'NQyn) is a matrix, and
c,= 2% rtei¥ ¢ - (31a)

2.2.2.2 First-Order Evaluation of Far Field
The expression for E(x) in (31) is now in the appropriate form

for an asymptotic evaluation by the method of steepest descent [5]. (31) contains

integrals of the form

I’S_o:Q(p)e-LWM(P'e)dp (32)

where w >> 1, and 6 is a parameter independent of p, and

M(p,8)= p+|tano|e, 5.
The principal contribution to I comes from the range of p in the neighborhood
of thh stationary points P; defined by

— M(P.e)]P,

= (') =
” = M'(p;)=0. (33

Then M(p, 6) may be expanded in a power series around Pjy: truncated at the

first non-zero derivative of M(p,8). If

a
4 . ‘é—‘e- M % 0
then
L
Sl 2 \NT . -;wM{o. 9)—.4:17’/450n£M(ﬂ(p.)]
I~ [——m——=) Q(p.)e ™" 7-* 7908 e (34)
7 mee an) 3R
Since w = p sin 0§, the factor w—;5 in (34), together with the like factor
(p sin 8)'% preceding the integral in (31) leads to the familiar p~! = 1/(k,R)
or inverse-distance dependence of E.
However, if, in the neighborhood of P; the condition '
l s Lo MO o
3(p-p,) M2 (;)>>¢ (p-p)) M (p;) (35)
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is not satisfied, where M ™ (pj) = [a“M(p)/apn]lp - 05 then (180) is not
an accurate approximation. In particular, if
M (p)= 0 (36)
then (34) is entirely inapplicable. This situation, which develops in the VLF
case in the vicinity of certain angles § = 6g, will be treated in Sec. 2.2.2.5.
To apply the above method, it is first necessary to determine the
. Stationary points. Since, in (27), z is small, we can regard é_chos e'zg'j
as part of the amplitude factor represented as Q(p) in (32). Furthermore, as
noted earlier, 81 is negative imaginary, corresponding to the fact that the
ordinary wave does not propagate so that only 0, need be considered hereafter.
Hence (33) yields for the stationary points
::_P (.p'*!ta.n elo-—,) =0
or
{—‘:-‘-=—|nane| . (37)
Since § is the angle which the radius vector from the source to the observation
point makes with the terrestrial magnetic field, (37) states that the statiomary
point occurs at the value of p where a line making the angle 6 to the ordinate
on a graph of G, vs. p is perpendicular to the curve. Thus it is now necessary
to examine G, (p) to determine the values of 8 for which (37) is satisfied. This
is carried out in Sec. 2.2.2.3 for a typical VLF situation.

2.2,2,3 Variation of oy With p

The expression for o° in terms of the ionosphere parameters

@, and o, is given by (15). These parameters are defined by

XU
W

Y

oy 2 |=—
3 u
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where

usl-iz,

Writing

=&, ~ize,+0(z?)

“3’ a_"j;z:j"’ 0(7.:)

then we have

In a typical VLF case, (171 may be in the order of 10° to 10°, while &, may
be in the order of -10° to -10°, so that &, /&, is in the order of 1072,

0,,2 may be written in the form

where

KN4

t ] -
K3 W X B =Ky

u:(u%w)f‘r

4':,2"'[

= Pzé’"*'“a)‘z"‘l"‘s

W=- 4“3(P2"°‘3){“0P2‘“:i"3 | ""3)0

U and W, in turn, may be written in forms similar to'(173):

U=U,-£z Uy+0(z?)

W= W,~iz Wy+0(z7)

A

(38)

(38a)

(39)

(40)



where

2 - -
U|=P o(,'u,)-‘?u(,(xg

W, = -4;3(}’)';';)(;'?2-&';3- &'*&9)

o : (40a)
U;"'pl(;,*‘\;g)‘z ;,:3"’;,;3
- 0=(=3 0=(3 :,Pj’;,;j’;,—,‘;"*;g
Wp= =~ =+ - A= = = e W:'
<3 p %3 A P oA Ky X+ oig
From (38a), &, is negative at VLF. Hence 612 is negative, so that &
is imaginary, corresponding to a non-propagating wave. Thus we may confine
attention to G, alone.
Introducing (40) into (15), and writing o in the form (27), we obtain in
S T (U.’+W.)*]i (41a)
bt l-2a, -2 x,
- 1 - =
= _ 1. [V, 7(VU,+3 W U2t W) *] _Oty (41b)
‘o,z‘z 0,2 2a. g2 =
% 0,2 X3

As already pointed out, g, is an even function of p, so that a plot of
G, or 52 vs. p will be symmetrical with respect to the ordinate p = 0.

For large p, o, approaches the asymptotic value

(72),= t("at/"‘.z)i“P (42)
which represents straight lines through the origin of slope
6o, fons 25 S 21y

Furthermore it can be shown that, for the VLF conditions given by (38a), (41la)
and (42) have no common root, so that the curve of g, vs. p never intersects
the asymptotes.

To investigate the behavior of G, in the neighborhood of p = 0, (41b)

may be expanded in a power series in p. This yields

B R LRE AR AL (CA)] AL D)LS
% fu. [(a,-l)(a;«;)]i} P 4w, {a’.*[(a,-o)(&.-a,)%i}i
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Since the coefficient of p is zero, 35, /3p = 0 at p = 0. Furthermore, for the
VLF case considered here, the second derivative there is negative, so that '&a
has a relative maximum at p = 0. In addition, %5,/dp = 0 at p = py» Where

3G, /3p has a relative minimum, py being given by

2 _ Uu"(u: - WM)*
M ) (%, %,)*

& -3y 2|y
where
Un=2 %5 (- &3 )&~ 1)
Wy = -5, (&, -5 ;) (%, - l)[(;('*'ag)"(d,'0(3)(0(;"')] .
Between the maximum of '5-'2 at p = 0 and the minimum at approximately
1'6'3 |!5, there is an inflection point at an abscissa pg- The expression for pgy
is quite complicated, so that a; numerical solution for it is required. However,
a. rough estimate of its location is that it is midway between the maximum
and minimum. Thus we estimate that
o pi/2 = (-8)1/2.

It is then readily found that

’t'a.n eels-%":- P'Paxl‘,‘g(%—‘?)"i=%§}tane,‘.

Thus, for the type of VLFP situation considered here, where

—&g >> X, >> l)

+h aln
v .l

the e of the

Ql

5, “curve is steepest at the inflection point, where it is
approximately four times the slope of the asymptotes.
From the above developments, a graph of g, vs p has the general form

shown in Fig. 18. The slope of this curve is 35, /dp. This slope is zero at

p = 0, decreases with increasing p to a minimum (i.e., maximum negative) value
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Fig. 18 Plot of &, (p)
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at an inflection point Pg> then increases again to zero at p = PM > and from there
on is positive. As p - @, the slope approaches asymptotically the value tan 0,,
where

ta""A’(‘“'/"‘a)i' Vy
where y is the normalized gyro frequency. For negative p, the curve is the
mirror image of the positive branch.

Typical values of f, are in the order of a few degrees.

Similarly, a graph of 32 vs, p is shown in Fig. 19. This has a monotonic
increase from a minimum at p = 0 to the same asymptotic value as g, .
From Fig. 18, the following conclusions are obvious:

(a) For 6 < Op, where

tan °°="(°;‘/°P)p'p°l
there are two stationary points if tan 6 > tan GA (from the positiveibranch in
thé region 0 < p < pM), or three, if tan 8 < tan GA (the additional one from the
negative branch in the region - ® < p < = py). | |

(b) For 6 = 8p;

a‘&z/apz =0 ;

consequently (34) is no longer applicable for angles in the vicinity of 6y,
since the condition (35) is violated. It is then necessary to perform a second-
order evaluation of the integral (32). This is investigated in Sec. 2.2.2.5.

(c) For p > py, there is no staticnary point for 8 > @8,. Thus, short-
wavelength components of the plane-wave spectrum cannot propagate at an angle
greater than 6, to the magnetic field.

For § — 8,, which is case (a) above, there are three stationary points.

The contribution of the stationary point from the part of the curve approaching

3
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Fig. 19 Plot of 5, (p)

36



the asymptote, is easily shown to be negligible because of the effect of

collisions. This is due to the factor
: e—plcoselz;,

which is taken into the amplitude factor Q(p) in (32). As shown in (41b),

5; o G, , while from (42), T, = @ sp » @, corresponding to 84. Thus the above
exponential factor reduces the contribution of this stééionary point to' a
vanishing small value,

In the work of Arbel and Felsen [3], where collisions are neglected, a
singularity of the far field develops for 6 = 6, due to the contribution from the
asymptotic part of the g, vs. p curve. In order to overcome this, it was
necessary for them to revert to a distributed source in order to obtain a
convergent spectrum. The inclusion of collisions, however, avoids this because
of the exponential attenuation factor.

For an isolated stationary point p,, where (34) is applicable, the

expression (31) for the field becomes

(43)

[Cog

(£)= C, ( fq:’r]) e-pzlcoseﬁz(m) e—i.esingM,-J.-?- ssn(M(’))E(D.)’,{«c

h
where M,sp,f,tanelgz(Pf)

4 2 .
- M =,ta.n é,f;z ”/P))pw,
and L(p,) is the matrix

Up): =2 op N (&2 (p)).

o3 0 (;: - }'1)
From (43), since L(p,) is a matrix, it is evident that the field is
elliptically polarized, in general. Furthermore, (43) gives the contribution

of a single stationary point. If more than one stationary point exists, each

will yield a contribution of the form (43). The vector sum of the several
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contributions then will depend on distance, since, in general, M, will not be
the same for the several stationary points, so that an interference pattern will
develop.

The type of result (43) ceases to hold where two stationary points
approach each other, i.e., in the neighborhood of inflection points pgp, and
where the asymptotic expansion of the Hankel function, (30), breaks down, i.e.,
in the‘neighborhood of sin § = 0, 1In the former case, a second-order evaluation
of the integral (32) is necessary; this is outlined in Sec. 2.2,2.5. 1In the
latter case, a revised procedure, which is developed in Sec. 2.2.2.4, is necessary.

2.2.2.4 The Case sin 8 =0
When the observation point is in, or nearly in, the direction
of the magnetic field, the asymptotic expansion (30) no longer is usable, for
then the argument
pw = p‘:; sinle

is not sufficiently large to satisfy the condition pw >> 1. This condition is
violated in the vicinity of 8 = 0. According to the first-order evaluation in
Sec. 2.2.2.2, the maximum and minimum locations p = 0 and p = py are statiomary
points for § = 0. Consequently the first-order evaluation of Sec. 2.2.2.2 is
inapplicable in that case. |

The applicability of the asymptotic expansion is determined by the magnitude
of the ar;ument, which in the present case is composed of the three factors
p, 8in 0, and p. Thus, for an arbitrarily small, yet finite, value of sin g,

the argument can be made sufficiently large by making the product pp large enough.

| For the stationary point Py > which is large, this is feasible, but not for p = O.

- Thus it suffices to consider the limiting case sin § = 0, since the procedure then

will épply both to py for sin =0, and to p = 0.,
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For 6 = 0, pw = pp sin 6 = 0, so that Jo(pw) = O except for n = 0, for
which J (pw) = 1. Consequently only the first type of integral in (29) survives.
o
Furthermore, Lo(p) contains terms with pam, where m = 0, 1, 2, The pertinent
integral thus is
.0 . = o0 . -
I,)cszne-‘pradp’e-pz¢;5;sz;e “PTayp
This has stationary points at d5,/9p = 0, A first-order evaluation of the

integral around a stationary point PS thus is

- . - . s 2 .
j= e PE fz(Ps)e-cpo', (Ps) jowpxm-ﬂe-b $p0p-ps) o’,(‘)(Ps)dP

For PS = 0, the magnitude of the integral in this expression is
m!
2[%P°1w/m}m"

Thus the decrease of the field with distance is at least as rapid as p 1.

On the other hand,_for Py = PM’ which in the VLF case is
"Pnz(""?).%
and thus very large, the factor p2m+1 in the integral is slowly varying in the
neighborhood of the stationary point, so that it may be set equal to prm+1 and

taken out from under the integral., The result then becomes

;

. %
207(pa)! "

An equal contribution results from the stationary point at - PM, so that the

Zm'be—Pz;z(Pn)e-Lp;’:(Pn)'b“} (44)

above value is doubled. This ieads to a distance dependence of the field of p‘%_
The angle over which the result (44) holds is a function of distance, since,
as already pointed out, for any finite value of sin 0 the product pw becomes
large at a sufficiently large distance. The p'% denendence for § = 0 corresponds
to the fact that in this direction propagation is two-dimensional.
Of the three stationary points at § = 0, the one at p = 0 is of lower order

in the far field than those at p = |py|-
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2.2.2.5 Second-Order Evaluation of Far Field
In the first-order evaluation of (32), M(p,B8) is expanded in a

power series, which is terminated at the second degree term, on the assumption
that higher order terms are negligible in comparison to it. Specifically, this
demands that (35) be satisfied. 1In the neighborhood of pg, where (36) holds,
this condition is violated, so that it is necessary to carry the power series
expansion to include the third degree term, wﬁich involves M(3) (r).

The vanishing of the second derivative is due to the coalescence of two
nefghboring stationary points p , p,. Both of these satisfy (33), which leads
to (37). It is then preferable to expand the exponential about the point pg

rather than the st:'ationary point(s). This is accomplished by writing the exponent

as
~iM(p,e)=-s [Na*(P‘.Pe)Mm_"E'? (p-pa)’M™]
=-i Mg+ v?t-1%/3
where ’
t=[L4MIT% (p-p)
yis-im®
and -
MB’ M(PB;G)
mb- 2 M{g 9)‘
p"  lprpe’

The exponent has stationary points at t,, , = £y, and these must be made to

coincide wit;h Pys By Hence

vle-y [M(p, 6)- M(Pz.e)]

With the exponent in the above form, the integration path passes through the

three points t =y, 0O, - vy and passes off to infinity along steepest descent
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lines from £y [6]. The integral then leads to the Airy functions, or,
alternatively, the modified Hankel functions of order one-third [7]. The

result is that the field becomes

27 C 2 1 _ = _; . ‘ -
EC)= rommagr () o FoIeosoB2 00 emdesioMe a1 ()1 (5, 4 &

sl

A notable feature of this result is that the field varies with distance as p -,
which is slower than the normal p~}. This is due to focusing which results
from the coalescence of the two stationary points at 8 = GB. As in the case of
6 = 0, the angular range of (45) decreases with increasing distance.

Since SB is the maximum angle at which a stationary point occurs, the angle
Op represents the boundary of the cone of propagating rays. For 6 > g, mno
propagation takes place. 1In Sec. 2.2.2.3 an estimate of GB was given as

approximately four-times GA. Thus, typical values of O at VLF are around 10°,

2.3 IMPEDANCE OF AN ELECTRICALLY SMALL LOOP

In SR 1 the analysis of the impedance of an electrically small loop was
given. This was left in a form which required numerical integrations to evaluate
the radiation resistance. Further work has led to a simple closed form result
for the limiting cases of loop axis parallel and perpendicular to the terrestrial
magnetic field. From these results it is found that the radiation resistance
of an electrically small loop is many orders of magnitude higher in the
ionosphere than in free space and varies only a small amount with orientatiom.
The loop thus appears to be an almost ideal type of radiator for VLF frequencies

in the ionosphere.
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2.3.1 Discussion of Loop Impedance Properties

The impedance of an electrically small loop was reduced to the form

where

2,= i120mAlog(3-1)- uzowA\OS,("—A!——'Z- (46)

_"SAZ v ( 2n 7920 Chet
“a 2 EStnydpz (2")‘ % r+re

Chn [‘(dnda“"n "‘°‘2)5'“ o sintu Q-+ oy Qop ]} 47

re+ry 2

) Sin“p*ogcospy
“1SLAZ (T &,/ \n n-l
222=_._'L_ S S”\"‘di‘z( ') (2A M2t\“l §-Q2n-ldh
o]
n=\

+

2 (@n-1)!
- /
-(x, 3= a?+ i) sin?o SIN*UQop-3*tonos Qo
+dn—l

o, Sin‘p* ety cast

(48)

A 1is the electrical circumference of the loop, and a the electrical half-
width of the strip cross section considered.

Since the inductance of the strip loop is
L‘l‘o ("’3'—"1' )
Ko 2

its reactance is

Lwl= 4,'.,407\{’/\'03( 2

= 1207 A log ——-—) Z, .

Consequently, Z, is precisely the inductive reactance of the loop, and it is

independent of the ionosphere parameters or loop orientation.
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(47) and (48) are complicated expressions for Z,,; and Z,, . However, it
is possible to simplify these greatly by virtue of the fact that the loop is
electrically small, so that A is a small quantity. Hence, in the summations in

(47) and (48) we need retain only the first term. This gives

Zz|=3OvA4 ST;in,,«dH Qacg - = [("‘ X3 = +°‘2>5’” esin HQo ] szzj}
(o]

r,*ra ryra °(,Slh F("’O(a('ﬂi }X

v 2+ ox2 in“ \ 2
Zzz’i.-?—o—Aajsianng,d-rdo [(O('O(3 il d)s S sin F'QI el e Q]& )
mw b J

o, S»n },(+o(3cos M
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In the free-space case, Z,, reduces to
Z, - Res=80n?A? (50)
which is the familiar radiation resistance of a small loop [8]. Z,,, in the
free-space case, is purely imaginary. Since it is of order A%, it is negligible
relative  to the reactance Z, , which is of order A.

In general, both Z,, and Z,, have real and imaginary parts. This is partly
due to the effect of collisions. Even in the collisionless case, however, the
integrals in Z,, and Z,, have both real and imaginary components when o, and o,
have opposite signs. This situation prevails in the VLF case being considered
here. The imaginary (reactive) parts of Z,;, and Z,, should be negligible relative
to Z; , since they are of ordef A* and A3, respectively, while Z;, is of order A.
The real part of Z,, is of order A*, and this is the order of the free-space
resistance (50). The real part of Z,,, on the other hand, represents a

resistance of order A®. Consequently, a loop radiates more efficiently at VLF

in the ionosphere than in free space.

In view of the importance of this conclusion, it is of interest to determine
the properties of this resistance term which arises from Z;;. Since the Q-terms
involve a B-integration, a double integration is involved. One of these
integrations may be performed by transforming from (u,B)-coordinates back to
(o ,0) -coordinates and carrying out the g-integration. This gives

3
7, ;::3:9/4 ” [xo) XD, x ,i_«r}

(51)
-4 BOWAa(l‘ 4cosl<9)

o4
where R = [1 - <} - &i) sinaesinaﬁj%. The last term in the braces is a pure

reactance, so that it does not represent a radiation resistance term, and so may
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be neglected in the present discussion. The factors xé%),ﬁa),(a) are

(co; 6- 5in O)J

X()'i“z(da‘ )[cas 6{(*2 sin 9)*

.2
c:oszo-Sm ecos‘«?]
?

(1> [ (25 ") 2{"‘3 “!)""‘ ocos’e(+ces’ ‘)][' oy (ﬁ'fg__,—)z
{“t‘uj)/“J

XLJ)"'4(°‘J‘°‘I)(CC’$ o-sin’ e)sm @ cos” e cos 0("*/_-3_'_ +
o3

The factor an)'%v= -i(x-l)ié, where x is the square of the normalized plasma
frequency, is negative imaginary in the collisionless VLF-case (x >> 1). Hence,
in the range of ¢ for which the radicand in the denominator of (51) is positive,

a resistance term results. This range of ¢ is 0 to sin 1{(1111Aya)%51n6} or n/2,
whichever is smaller.

Fortunately, it is possible to carry out the final g-integration of (51) for
8 = n/2 in the nearby collisionless case. (It is still necessary to retain a
small collision term in the radicand to keep Z,, finite) | Since the integral
becomes trivial for § = 0, we can also obtain the range of variation of the -

resistive component of Z,, with the loop orientation 8.

For 0 = n/2,
X3y = -2,
X9 = oo, /a-»)’-l L("—‘:%}g—]” “0‘:{' b‘;,sc\%’l
x%:0
where
o [ | (52)
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2 oty -t §
Kie —— = |- p*
3

R‘J“k’sinl“ ,

(53)

(54)

In the VLF case of interest here, where the normalized ionosphere parameters

X and y are large, and z is small,

d,ﬁ'r%(l-iz) )
X
o(_,”'x(f*,c'z) )
and

2 2
. X Z
d'sz—yl*“' y4 '

so that Xéé) is negligible in.comparison with ng). Also

)
—st=b’ﬁ*-?(l-b2z).

Consequently

K,y &2 - —
b -~ .

Then

. i 2z
2 .
Kk =l-b1=l*—3"p—; .
Y

Thus the real part of R° vanishes in the rangd of integration at an angle ¢,

given by

sin ¢, = (I#—y’—,)-f |
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or
tang, = Y. (55)

Thus
o
R(6)=(-< jyz) - (54a)

For ¢ > @, , the real part of R° becomes negative, so that R becomes approximately
purely imaginary. Thus this range of ¢ contributes a reactance term, with which
we are not concerned. Hence, to find the resistance contribution, R,,, of (105)

we replace the upper limit of the integral by ¢, . Then

= L160A°x o5 Reé;+‘R[ K ces ’]u}

RZ? I (R"' b)!

ez1/2
(56)

- 1604° (%) Re {1},
In the integrand, we write

I _(R-6)* _ R*+b*-2bR

(R+b)* (R*-b")* ~ (R*-b%)?

But, since k® = 1-b?,
R:-b7= 1-(1-b7)sin%¢-b%= (1-b) cos 24,
R+ b*: (1-Ycos g +2b7,

Hence |

Kleesd _ _ 2b°+2bR
(b+R)? ("bl)cos‘¢ )

s0 that

4 d¢ 05?4 ¢ dé 2b (% d
5 [ (bc+:?)‘ ] b* fa Recos™y 1-b° go “Sﬂd'

-
-

-2b {r ) [RG) tans, - €0)]] - P tan s,
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where F(¢,k) and E(¢, ,k) are the elliptic integrals of the first and second kind,
respectively. Since, from (52a), b is almost purely imaginary, the last term

does not contribute a resistance term. Further, from (54a) and (55),

R(Q,)ta.n § = (22)3 e ¥
which is very small in virtue of.the condition z << L. Hence we obtain

Re 1132 L [0, )0 € b, 0],

Since, from (55), @, = tan™ly ~ m/2, and from (53a) k° = 1-b° & 1 + 1/¥* ~ 1,

we have

Els, k)= |

F(a k)= 22 (T K)-0() = log (4y).

Consequently (56) becomes

o . 3 % '_"9_4L)
R,,L_g 32047 2 i+ yT ) G
For 9 = 0,
X5y = 2
@) L
X2 8 - o, ['+(R+b)’]~-2d'm
)
X;z <0,
R=1
so that
w2 x®  x@, x0 I
. 50 22 R.n 2 4= oo, ([——d—‘)z -rx,ay,.
Hence

3 X
R,,|M=:eom - (58)
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From (57) and (58),

i 2 |
R"lo=ﬂ/2ﬁ"la=o=7('*;l log 4y ). (59)
Furthermore, from (57) and (50),
2 x
R"lo-o/a"-;; ¥y (60)

In a typical VIF case, for example,

x=4°10°
y=40

Iog y=¥5

x 4
— -
S=i01,

Consequently, from (59), the radiation resistance of a small loop in the

ionosphere varies only a small amount with loop orientations (about 4 db).

Furthermore, from (60), the radiation resistance is many orders of magnitude -

greater than in free space (about 10*/A for the above parameters). For a single-

turn loop of l-meter diametgr, A =6y * 107%, so that this factor is about 103.
From (58), the radiation resistance of this single=-turn loop at 18 kc in the
above ionosphere is about 1074 ohm. Hence a 10-m diameter single-turn loop would
have a radiation resistance of 0.1 ohm, etc.

(58) shows that the radiation resistance of a small loop in the ionosphere
varies as A®, while in free space it varies as A*. Thus in free space, since
A = kyr, where r is the loop radius, the radiation resistance increases as the
fourth power of the radius or of the frequency. In the ionosphere, the radiation

resistance increases as the cube of the radius. Since

X . =
y
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it follows from (58) that the radiation resistance in the ionosphere increases
only as the square of the frequency in the VLF region,

In view of the favorable radiation properties of a VLF loop for radiation in
the ionosphere, it is of interest to calculate the impedance for a practical cross
section such as a round wire, instead of the flat strip used in the analysis.

For a single turn loop of radius r , made of round wire of radius a, the
inductance is

) - Er
L= dma-10"% log (—-—- —1.75)
a
so that its reactance is .
X,= 120w A(log =5 - 1.75)
' 9 a
where A = 2mr/ko. -

Calculations will be made for a loop 10 meters in diameter and a frequency of

18 ke, Then

A= 2mnr/Rky= 6w 1074,

[

For a wire diameter of 2.5 em, r/a = 10/0.025 = 400, and

4.56 ohms.

X
As shown above, the radiation resistance of a 10-m loop at 18 kc is approximately
0.1 ohm. Hence the Q-factor of such a loop is
Q = X, /R ~ 50.
The above values of reactance and radiation resistance indicate that a 10-m
loop would be easy to feed efficiently. Hence these calculations lead to the

conclusion that a properly designed loop can be an efficient antenna for VLF

radiation in the ionosphere.
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3. NONLINEAR DIAGNOSTICS

There is a profuéion of nonlinear effects which can occur in a plasma.
These range from harmonic generation and wave interaction to instabilities and
the generation of oscillations due to interaction of electromagnetic waves and
energetic particle streams. The present studies are aimed at selecting the types
of nonlinea% effects which can be used to determine basic properties of the plasma,
and thus form the basis of diagnostic techniques.

As an initial problem, the combination frequencies set up in a warm plasma
by an applied field containing two radio frequencies are being investigated. Since
the combination frequency can be selected to bear non-harmonic relation to the
applied frequencies, the resalt can be méde substantially independent of instrumental
nonlinearities.
3.1 MATHEMATICAL DESCRIPTION OF PLASMA

A plasma is rigorously described by the coupled system of Maxwell's equations
plus the Boltzmann equatioﬁs for the electrons and ions. Instead of the Boltzmann
equations, the magnetohydrodynamic (MHD) equations which can be derived from the
Boltzmann equations by taking velocity moﬁents can be dsed. The advantage is that
the MHD equationé are much easier to handle than the Boltzmann equations.

A plasma is considered in the electron gas approximation in which the positive

ions are considered immobile. This approximation, is valid if the frequencies of

interest are suificiently high so that the ions do not respond to the fields

73}

because of their large mass.

To illustrate the methodology, the MﬂD:Maxwell equations will be made into
a closed system by neglecting thermal effféts; i.e., a "cold" plasma is considered.
This procedﬁie is followed only at the initial stages of the investigation. The

+

purpose of this is‘to demonstrate the usefulness of the procedure by using a

-
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relatively simple set of equations. Once this point has been demonstrated, the
more complicated equations for the hot plasma can be considered with confidence.
The electron density is written as

n=ny +n"
where ny is constant and equal to the ion density. n' is a perturbed density, of
zero average value, which is a function of time and space. Similarly, the magnetic
field in the medium is decomposed into

L=H +H
where Hy is the external static magnetic field and H; is the internal magnetic
field due to the moving charges. The equations for the cold plasma then can be

put into the following form:

where:
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(63)

(64)



In (4), W, is the gyro frequency

e

i

We

-

2 Ho (65)

3

and v is the collision frequency, which is assumed to be constant.

(61) and (62) have been written so that the linear terms are on the left and
the nonlinear terms are on the right.

The basic assumption of the method used is that the nonlinearities are
sufficiently small and sufficiently slowly varying in space and time that a
perturbation method can be used to solve (61) and (62).

The zero order solutions of (61) and (62) are defined by setting F = G = 0.

~

Plane wave solutions of the resulting equations can be easily found and are well
known. Since the equations are linear, a linear combination of plane waves is

also a solution of these equatioms.

T , . .
In general, theré are three plane wave medes in 2 cold plasma, two of which

propagate, while the third represents a plasma oscillation at the plasma frequency.

If finite temperatures are considered, then all three modes propagate.

In view of the above discussion, the zero order field in the plasma is taken

to be:

(66)
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where * denotes the complex conjugate. The subscript j labels quantities
referring to the two applied frequencies, while the supersq?ipt i 1labels the
three plasma modes for each j. The relationship between w5 andtgj(i)is determined
by solving a well-known algebraic equation. In solving this equation, the
polarization of the plasma modes is obtained.

The zero order expressions for H;, n', and v are easily found from knowledge
of EfO). By using these expressions in (63) and (64) one can easily compute first
approximations EfO)and QFO) to F and G. It is obvious from the forms of (63) and
(64) that EfO) and ng) will contain terms with frequencies equal to all combinations
of wj with j = 1,2.

Using EfO) and ng) in (61) and (62), respectively, first-order equations for
E and v of the combination frequencies ®, * w, can be obtained. The solutions of
these equations then give a first-order perturbation solution of the problem.
The perties v and wp enter the polarization properties of the waves,
so that, for example, a measurement of the relative amplitude and phase by a
probe will allow these quantities to be deduced.

This method is being applied to the more interesting problem of a warm plasma

which is excited at a sheath. 1In particular, wave properties which can be measured

to deduce electron temperatures will be sought.
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